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The design and synthesis of molecules that can organize into
specific supramolecular assemblies in the solid state is an area
of considerable interest,1 since incorporation of well-ordered
structural components into a crystal lattice may lead to new
materials with desirable chemical and physical properties.
However, it is still difficult to reliably predict crystal structures
because individual molecules within a lattice may adopt several
different, nearly degenerate, conformations depending on the
specific conditions under which the crystals are grown. To
develop species whose assembly is more controlled and predict-
able, we are investigating the formation of supramolecular
assemblies with low molecular weight monometallic helical
complexes.2 We are particularly interested in using the intrinsic
chirality of helical complexes to form chiral solid state su-
pramolecular assemblies.3,4 In this communication we report
a rare example of spontaneous resolution of metallohelical
complexes within individual single crystals.5 This resolution
is driven by multiple edge-to-face intermolecular aromatic
interactions to form chiral supramolecular arrays.
We have reported that metal complexes of the multidentate

ligand 2,6-bis[[2-[(2-acetylphenyl)carbamoyl]phenyl]carbam-
oyl]pyridine (H21)6 are helical and therefore serve as appropriate
starting materials.2 The structure of the five-coordinate Cu1
complex shows that coordination to the Cu(II) center is provided
by three nitrogen donors from the pyridyl-diamidate chelate
and two inner amide oxygens [O(2), O(2a)] of the appended
aryl groups. The Cu-Oamide interactions are significant in
determining the helical morphology; the unsymmetrical helix
in Cu1 results from different Cu-Oamidebond distances [Cu-
O(2a), 1.931(4) Å; Cu-O(2), 2.315(4) Å]. Cu1, which crystal-
lizes in the centrosymmetric space groupP1h, exists as a racemic

mixture of right- and left-handed helices in the solid state, as
do all metallohelices of12- studied previously.2,7

These studies on Cu1 suggested that modifications in helicity
can occur by breaking either one or both of the structurally
important Cu-Oamide bonds. Since these bonds are relatively
weak, the Oamidedonors should be readily substituted by more
basic exogenous ligands. Substitution can indeed happen when
Cu1 is treated with pyridine ligands. Dissolving Cu1 in neat
pyridine changes the spectroscopic properties of the complex,
indicating that the coordination environment about the Cu(II)
center has been altered.8a These spectroscopic changes include
(1) a red shift of the dd band in the electronic absorption
spectrum from 624 nm for Cu1 in CH2Cl2 to 598 when measured
in pyridine and (2) shifts in the EPR parametersg⊥ (2.00 to
2.06) andA| (180 to 200 G). Similar spectroscopic changes
are observed when Cu1 is dissolved in 3,5-lutidine.8b

An X-ray diffraction study on Cu1(py) confirms that binding
of a single pyridine to copper causes a significant structural
rearrangement.9,10a The molecular structure of Cu1(py) is
presented in Figure 1. The copper in Cu1(py) is bound by a
pseudo square planar arrangement of nitrogen atoms provided
by the pyridyl-diamidate chelate and the exogenous pyridine.
Nitrogen atom N(4) of the exogenous pyridine is positioned
trans to the pyridyl nitrogen N(3) of12-, with the Cu-N(4)
distance of 1.988(10) Å being slightly longer than the Cu-
N(3) bond length [1.914(9) Å]. The Cu1(py) complex has exact
C2 symmetry where the axis bisects the two pyridine rings,
coinciding with atoms N(3), Cu, and N(4). The two Oamide
donors that were coordinated originally to the copper in Cu1
[O(2) and O(2a)] are rotated away from the copper in Cu1(py)
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and no longer interact with the metal ion [Cu-O(2) distance is
5.89 Å]. A chiral cleft about the exogenous pyridine is formed
by the appended groups in12-. The inner aryl moieties of the
appended groups are intramolecularlyπ-stacked with the bound
pyridine at centroidaryl-centroidpy distances of 4.37 Å, and all
three rings are canted in the same direction relative to the planar
pyridyl-diamidate chelate (average angle between ring planes
and the chelate is-57°). The outer aryl rings of the appendages
are positioned above and below the equatorial coordination plane
with the acetophenone oxygens O(1) and O(1a) located 2.618-
(9) Å from the copper(II) center.
The most unusual feature of the crystal structure of Cu1(py)

is that all the complexes within the lattice have the same helical
chirality. Since H21 is achiral in solution,2,11 the observed
helicity in Cu1(py) must result from spontaneous resolution as
individual crystals form. Crystallization from solution should
produce enantiomeric crystals in equal numbers. A crystal of
the other handedness has been characterized for Cu1(lut); this
crystal belongs to the tetragonal space groupP43212,10b the
enantiomorph of theP41212 space group found for Cu1(py).
The crystal lattices of the two structures are almost identical
with only slight deviations (<8%) observed in their unit cell
parameters. Moreover, the obtained molecular structure of
Cu1(lut) is similar to that described above for Cu1(py), the major
difference being the opposite helicity (Figure 1).12

The similar lattice architecture shared by Cu1(py) and
Cu1(lut) provides insights into the observed chiral resolution.
The lattices contain ordered arrays of metallohelices in thea,b
plane. Each metallohelix is positioned at the center of a hexagon
composed of six surrounding metallohelices; between neighbor-
ing helices there are 12 edge-to-face aromatic interactions.13

Three of these interactions are unique by symmetry, which for
Cu1(py) are at aryl ring centroid-centroid distances of 4.98,
5.10, and 5.86 Å with corresponding interplane angles of 64.5°,
70.7°, and 62.7° (Figure 2).14 The clustering of edge-on
interactions within an array undoubtedly contributes to the
stabilization of this supramolecular assembly of metallohe-
lices.15-17 This type of stabilization necessitates the nearly

perfect alignment of helices within an array which is only
possible if individual metallohelices are of the same helicity.
Thus the assembly of the arrays during crystallization appears
to be enantioselective for one helicity.18

These results demonstrate how weak intra- and intermolecular
interactions can be used to assemble metal-based chiral su-
pramolecular species. The design of Cu1(py) and Cu1(lut)
allows for modifications either at the exogenous ligand site or
at the appended groups of H21, granting convenient synthetic
access to a variety of other helical complexes. We are
investigating currently how these modifications affect the
assembly of supramolecular species.
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Figure 1. ORTEP diagrams of Cu1(py) (left) and Cu1(lut) (right).
Hydrogens are removed for clarity. Selected distances (Å) and angles
(deg) for Cu1(py) [Cu1(lut)]: Cu-N(2), 2.012(6) [1.998(7)]; Cu-N(3),
1.914(9) [1.921(10)]; Cu-N(4), 1.988(10) [1.948(9)]; Cu-O(1), 2.618-
(9) [2.712(10)]; N(2)-Cu-N(3), 80.1(2) [80.6(2)]; N(2)-Cu-N(4),
99.9(2) [99.4(2)]; N(3)-Cu-N(4), 180.0(1) [180.0(1)]; N(2)-Cu-
N(2a) 160.2(4) [161.2(4)].

Figure 2. A portion of the crystal lattice for Cu1(py) (view of a,b
plane). Selected intermolecular aromatic centroid-centroid distances
(Å) [and corresponding interplane angles (deg)]:x, 4.98 [64.5];y, 5.10
[70.7]; z, 5.86 [62.7].
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